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Portals 3.0

• New API for functionality of Portals 2.0 on 
ASCI/Red

• Intended to provide application  bypass 
capabilities for programmable NICs
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Portals 3.0 Objects

• Match entry criteria:
– Process id (nid/pid,gid/rid)
– Match bits (64 bits)
– Ignore bits – mask off unimportant match bits

• Memory descriptor options
– Respond to gets
– Respond to puts
– Sender or receiver managed
– Truncate
– Generate an acknowledgement
– Unlink when threshold is 0



MPI Protocols
• Short protocol

– Eager send
– Buffer unexpected messages (messages for which there 

is no matching posted receive) at the receiver
– Unexpected messages are copied when the receive is 

posted
• Short synchronous protocol

– Same as short protocol, but waits for acknowledgment
• Long protocol

– Eager send
– Buffer unexpected messages in-place at the sender
– Unexpected messages are pulled from the sender when 

the receive is posted
• Ready protocol

– Same as short protocol for both short and long 
messages, but no receive-side buffering



Flow Control

• Portals flow control
– Drop messages that receiver is not prepared for
– There are no unexpected messages

• Long eager protocol might waste network 
resources
– Good performance for well-behaved apps
– Network resources belong to the app
– Doesn’t matter on ASCI/Red, network can handle it
– Doesn’t matter on Cplant™, RMPP takes care of it
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Limitations

• Limited number of unexpected messages allowed 
due to kernel memory resources

• Any size unexpected message consumes an 
unexpected message slot, even zero-length

• Unexpected message limit based on count rather 
than size

• Consumes a significant amount of Portals 
resources
– 1025 memory descriptors



Current Strategy
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Advantages

• More efficient use of unexpected message 
memory
– A zero-length message doesn’t consume any 

memory
– Limitation becomes space rather than count

• Uses only a few Portals resources
– Four memory descriptors versus 1025
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